Selected Publications

This paper describes SCAN (Symbol-Concept Association Network), a new framework for learning recombinable concepts in the visual domain. We first use the previously published beta-VAE (Higgins et al., 2017a) architecture to learn a disentangled representation of the latent structure of the visual world, before training SCAN to extract abstract concepts grounded in such disentangled visual primitives through fast symbol association.

This dataset consists of 737,280 images of 2D shapes, procedurally generated from 5 ground truth independent latent factors, controlling the shape, scale, rotation and position of a sprite. This data can be used to assess the disentanglement properties of unsupervised learning methods.

Recent Publications